Different approaches to processing environmental DNA samples in turbid waters have distinct effects for fish, bacterial and archaea communities (2024)

[1] Alberdi, A.; Aizpurua, O.; Gilbert, M. T. P.; Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples, Methods in Ecology and Evolution, Volume 9 (2018) no. 1, pp. 134-147 | DOI

[2] Ballard, J.; Pezda, J.; Spencer, D.; Plantinga, A. An economic valuation of southern California coastal wetlands. , Southern California Wetlands Recovery Project, 2018 (http://scwrp.org/wp-content/uploads/2017/06/SoCalWetlands_FinalReport.pdf)

[3] Bischoff, V.; Zucker, F.; Moraru, C. Marine bacteriophages, Encyclopedia of Virology, Elsevier, 2021, pp. 322-341 | DOI

[4] Bohmann, K.; Chua, P.; Holman, L. E.; Lynggaard, C. DNAqua‐Net conference unites participants from around the world with the quest to standardize and implement DNA‐based aquatic biomonitoring, Environmental DNA, Volume 3 (2021) no. 5, pp. 884-888 | DOI

[5] Bowman, J. P. The family Cryomorphaceae, The Prokaryotes, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 539-550 | DOI

[6] Buxton, A. S.; Groombridge, J. J.; Griffiths, R. A. Is the detection of aquatic environmental DNA influenced by substrate type?, PLOS ONE, Volume 12 (2017) no. 8 | DOI

[7] Callahan, B. J.; McMurdie, P. J.; Rosen, M. J.; Han, A. W.; Johnson, A. J. A.; Holmes, S. P. DADA2: High-resolution sample inference from Illumina amplicon data, Nature Methods, Volume 13 (2016) no. 7, pp. 581-583 | DOI

[8] Caporaso, J. G.; Lauber, C. L.; Walters, W. A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S. M.; Betley, J.; Fraser, L.; Bauer, M.; Gormley, N.; Gilbert, J. A.; Smith, G.; Knight, R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms, The ISME Journal, Volume 6 (2012) no. 8, pp. 1621-1624 | DOI

[9] Carøe, C.; Bohmann, K. Tagsteady: a metabarcoding library preparation protocol to avoid false assignment of sequences to samples, bioRxiv, 2020 | DOI

[10] Chen, H. VennDiagram: Generate high-resolution Venn and Euler plots (R Package), 2018 (https://cran.r-project.org/web/packages/VennDiagram/VennDiagram.pdf)

[11] Curd, E.; Gomer, J.; Kandlikar, G.; Gold, Z.; Ogden, M.; Shi, B. The Anacapa Toolkit, 2018 (https://github.com/limey-bean/Anacapa)

[12] Curd, E.; Kandlikar, G.; Gomer, J. CRUX: Creating reference libraries using eXisting tools, 2018 (https://github.com/limey-bean/CRUX_Creating-Reference-libraries-Using-eXisting-tools)

[13] Deiner, K.; Bik, H. M.; Mächler, E.; Seymour, M.; Lacoursière‐Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D. M.; Vere, N.; Pfrender, M. E.; Bernatchez, L. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities, Molecular Ecology, Volume 26 (2017) no. 21, pp. 5872-5895 | DOI

[14] Deiner, K.; Walser, J.-C.; Mächler, E.; Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA, Biological Conservation, Volume 183 (2015), pp. 53-63 | DOI

[15] Dejean, T.; Valentini, A.; Miquel, C.; Taberlet, P.; Bellemain, E.; Miaud, C. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus, Journal of Applied Ecology, Volume 49 (2012) no. 4, pp. 953-959 | DOI

[16] Dell'Anno, A.; Corinaldesi, C. Degradation and turnover of extracellular DNA in marine sediments: ecological and methodological considerations, Applied and Environmental Microbiology, Volume 70 (2004) no. 7, pp. 4384-4386 | DOI

[17] Doi, H.; Uchii, K.; Matsuhashi, S.; Takahara, T.; Yamanaka, H.; Minamoto, T. Isopropanol precipitation method for collecting fish environmental DNA, Limnology and Oceanography: Methods, Volume 15 (2017) no. 2, pp. 212-218 | DOI

[18] Earl, D. A.; Louie, K. D.; Bardeleben, C.; Swift, C. C.; Jacobs, D. K. Rangewide microsatellite phylogeography of the endangered tidewater goby, Eucyclogobius newberryi (Teleostei: Gobiidae), a genetically subdivided coastal fish with limited marine dispersal, Conservation Genetics, Volume 11 (2010) no. 1, pp. 103-114 | DOI

[19] Esling, P.; Lejzerowicz, F.; Pawlowski, J. Accurate multiplexing and filtering for high-throughput amplicon-sequencing, Nucleic Acids Research, Volume 43 (2015) no. 5, pp. 2513-2524 | DOI

[20] Gordon, A.; Hannon, G. J. FASTX-Toolkit, 2010 (http://hannonlab.cshl.edu/fastx_toolkit/)

[21] Fernandes, A. D.; Macklaim, J. M.; Linn, T. G.; Reid, G.; Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq, PLoS ONE, Volume 8 (2013) no. 7 | DOI

[22] Ficetola, G. F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples, Biology Letters, Volume 4 (2008) no. 4, pp. 423-425 | DOI

[23] Gao, X.; Lin, H.; Revanna, K.; Dong, Q. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy, BMC Bioinformatics, Volume 18 (2017) no. 1 | DOI

[24] Occurrence Download, The Global Biodiversity Information Facility, 2022 | DOI

[25] Goldberg, C. S.; Turner, C. R.; Deiner, K.; Klymus, K. E.; Thomsen, P. F.; Murphy, M. A.; Spear, S. F.; McKee, A.; Oyler‐McCance, S. J.; Cornman, R. S.; Laramie, M. B.; Mahon, A. R.; Lance, R. F.; Pilliod, D. S.; Strickler, K. M.; Waits, L. P.; Fremier, A. K.; Takahara, T.; Herder, J. E.; Taberlet, P. Critical considerations for the application of environmental DNA methods to detect aquatic species, Methods in Ecology and Evolution, Volume 7 (2016) no. 11, pp. 1299-1307 | DOI

[26] Harper, L. R.; Buxton, A. S.; Rees, H. C.; Bruce, K.; Brys, R.; Halfmaerten, D.; Read, D. S.; Watson, H. V.; Sayer, C. D.; Jones, E. P.; Priestley, V.; Mächler, E.; Múrria, C.; Garcés-Pastor, S.; Medupin, C.; Burgess, K.; Benson, G.; Boonham, N.; Griffiths, R. A.; Lawson Handley, L.; Hänfling, B. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds, Hydrobiologia, Volume 826 (2019) no. 1, pp. 25-41 | DOI

[27] Hinlo, R.; Gleeson, D.; Lintermans, M.; Furlan, E. Methods to maximise recovery of environmental DNA from water samples, PLOS ONE, Volume 12 (2017) no. 6 | DOI

[28] Historical Weather Summer 2018 at Point Mugu Naval Air Warfare Center (https://weatherspark.com/h/y/145310/2018/Historical-Weather-during-2018-at-Point-Mugu-Naval-Air-Warfare-Center;-California;-United-States)

[29] Jacobs, D. K.; Stein, E. D.; Longcore, T. Classification of California estuaries based on natural closure patterns: Templates for restoration and management (Technical Report), 2011 (https://www.urbanwildlands.org/Resources/619.a_EstuarineClassificationRestorationDesign.pdf)

[30] Kandlikar, G. ranacapa: Utility functions and “shiny” app for simple environmental DNA visualizations and analyses (0.1.0), 2020 (https://github.com/gauravsk/ranacapa)

[31] Kelly, R. P.; Shelton, A. O.; Gallego, R. Understanding PCR processes to draw meaningful conclusions from environmental DNA studies, Scientific Reports, Volume 9 (2019) no. 1 | DOI

[32] Kircher, M.; Sawyer, S.; Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform, Nucleic Acids Research, Volume 40 (2012) no. 1 | DOI

[33] Kumar, G.; Farrell, E.; Reaume, A. M.; Eble, J. A.; Gaither, M. R. One size does not fit all: Tuning eDNA protocols for high‐ and low‐turbidity water sampling, Environmental DNA, Volume 4 (2022) no. 1, pp. 167-180 | DOI

[34] Kwambana, B. A.; Mohammed, N. I.; Jeffries, D.; Barer, M.; Adegbola, R. A.; Antonio, M. Differential effects of frozen storage on the molecular detection of bacterial taxa that inhabit the nasopharynx, BMC Clinical Pathology, Volume 11 (2011) no. 1 | DOI

[35] Langmead, B.; Salzberg, S. L. Fast gapped-read alignment with Bowtie 2, Nature Methods, Volume 9 (2012) no. 4, pp. 357-359 | DOI

[36] Laramie, M. B.; Pilliod, D. S.; Goldberg, C. S.; Strickler, K. M. Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms, Techniques and Methods, 2015 | DOI

[37] Larsson, A. J. M.; Stanley, G.; Sinha, R.; Weissman, I. L.; Sandberg, R. Computational correction of index switching in multiplexed sequencing libraries, Nature Methods, Volume 15 (2018) no. 5, pp. 305-307 | DOI

[38] Leray, M.; Yang, J. Y.; Meyer, C. P.; Mills, S. C.; Agudelo, N.; Ranwez, V.; Boehm, J. T.; Machida, R. J. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents, Frontiers in Zoology, Volume 10 (2013) no. 1 | DOI

[39] Levy-Booth, D. J.; Campbell, R. G.; Gulden, R. H.; Hart, M. M.; Powell, J. R.; Klironomos, J. N.; Pauls, K. P.; Swanton, C. J.; Trevors, J. T.; Dunfield, K. E. Cycling of extracellular DNA in the soil environment, Soil Biology and Biochemistry, Volume 39 (2007) no. 12, pp. 2977-2991 | DOI

[40] Li, J.; Lawson Handley, L.-J.; Read, D. S.; Hänfling, B. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding, Molecular Ecology Resources, Volume 18 (2018) no. 5, pp. 1102-1114 | DOI

[41] Liang, Z.; Keeley, A. Filtration recovery of extracellular DNA from environmental water samples, Environmental Science & Technology, Volume 47 (2013) no. 16, pp. 9324-9331 | DOI

[42] Love, M. I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, Volume 15 (2014) no. 12 | DOI

[43] Majaneva, M.; Diserud, O. H.; Eagle, S. H. C.; Boström, E.; Hajibabaei, M.; Ekrem, T. Environmental DNA filtration techniques affect recovered biodiversity, Scientific Reports, Volume 8 (2018) no. 1 | DOI

[44] Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, Volume 17 (2011) no. 1 | DOI

[45] McMurdie, P. J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data, PLoS ONE, Volume 8 (2013) no. 4 | DOI

[46] McMurdie, P. J.; Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible, PLoS Computational Biology, Volume 10 (2014) no. 4 | DOI

[47] Miya, M.; Sato, Y.; f*ckunaga, T.; Sado, T.; Poulsen, J. Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; Kondoh, M.; Iwasaki, W. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species, Royal Society Open Science, Volume 2 (2015) no. 7 | DOI

[48] Nagarajan, R. P.; Bedwell, M.; Holmes, A. E.; Sanches, T.; Acuña, S.; Baerwald, M.; Barnes, M. A.; Blankenship, S.; Connon, R. E.; Deiner, K.; Gille, D.; Goldberg, C. S.; Hunter, M. E.; Jerde, C. L.; Luikart, G.; Meyer, R. S.; Watts, A.; Schreier, A. Environmental DNA methods for ecological monitoring and biodiversity assessment in estuaries, Estuaries and Coasts, Volume 45 (2022) no. 7, pp. 2254-2273 | DOI

[49] Oksanen, J.; Blanchet, F. G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P. R.; O’Hara, R. B.; Simpson, G. L.; Solymos, P.; Stevens, M. H. H.; Szoecs, E.; Wagner, H. vegan: Community Ecology Package (2.5-6), 2019 (https://CRAN.R-project.org/package=vegan)

[50] Pawlowski, J.; Bruce, K.; Panksep, K.; Aguirre, F.; Amalfitano, S.; Apothéloz-Perret-Gentil, L.; Baussant, T.; Bouchez, A.; Carugati, L.; Cermakova, K.; Cordier, T.; Corinaldesi, C.; Costa, F.; Danovaro, R.; Dell'Anno, A.; Duarte, S.; Eisendle, U.; Ferrari, B.; Frontalini, F.; Frühe, L.; Haegerbaeumer, A.; Kisand, V.; Krolicka, A.; Lanzén, A.; Leese, F.; Lejzerowicz, F.; Lyautey, E.; Maček, I.; Sagova-Marečková, M.; Pearman, J.; Pochon, X.; Stoeck, T.; Vivien, R.; Weigand, A.; Fazi, S. Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods, Science of The Total Environment, Volume 818 (2022) | DOI

[51] Perkins, T. L.; Clements, K.; Baas, J. H.; Jago, C. F.; Jones, D. L.; Malham, S. K.; McDonald, J. E. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment, PLoS ONE, Volume 9 (2014) no. 11 | DOI

[52] Pietramellara, G.; Ascher, J.; Borgogni, F.; Ceccherini, M. T.; Guerri, G.; Nannipieri, P. Extracellular DNA in soil and sediment: Fate and ecological relevance, Biology and Fertility of Soils, Volume 45 (2009) no. 3, pp. 219-235 | DOI

[53] Pilliod, D. S.; Goldberg, C. S.; Arkle, R. S.; Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples, Canadian Journal of Fisheries and Aquatic Sciences, Volume 70 (2013) no. 8, pp. 1123-1130 | DOI

[54] Port, J. A.; O'Donnell, J. L.; Romero‐Maraccini, O. C.; Leary, P. R.; Litvin, S. Y.; Nickols, K. J.; Yamahara, K. M.; Kelly, R. P. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA, Molecular Ecology, Volume 25 (2016) no. 2, pp. 527-541 | DOI

[55] R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing , 2018 (https://www.R-project.org/)

[56] Rees, H. C.; Maddison, B. C.; Middleditch, D. J.; Patmore, J. R.; Gough, K. C. REVIEW: The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology, Journal of Applied Ecology, Volume 51 (2014) no. 5, pp. 1450-1459 | DOI

[57] Robson, H. L. A.; Noble, T. H.; Saunders, R. J.; Robson, S. K. A.; Burrows, D. W.; Jerry, D. R. Fine-tuning for the tropics: Application of eDNA technology for invasive fish detection in tropical freshwater ecosystems, Molecular Ecology Resources, Volume 16 (2016) no. 4, pp. 922-932 | DOI

[58] RStudio Team RStudio: Integrated development for R. RStudio, PBC, 2020 (http://www.rstudio.com/)

[59] Sales, N. G.; Wangensteen, O. S.; Carvalho, D. C.; Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river, Environmental DNA, Volume 1 (2019) no. 2 | DOI

[60] Santoro, A. E.; Dupont, C. L.; Richter, R. A.; Craig, M. T.; Carini, P.; McIlvin, M. R.; Yang, Y.; Orsi, W. D.; Moran, D. M.; Saito, M. A. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: An ammonia-oxidizing archaeon from the open ocean, Proceedings of the National Academy of Sciences, Volume 112 (2015) no. 4, pp. 1173-1178 | DOI

[61] Sard, N. M.; Herbst, S. J.; Nathan, L.; Uhrig, G.; Kanefsky, J.; Robinson, J. D.; Scribner, K. T. Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears, Environmental DNA, Volume 1 (2019) no. 4, pp. 368-384 | DOI

[62] Schaarschmidt, F.; Gerhard, D. PairwiseCI: Confidence Intervals for Two Sample Comparisons (0.1-27). , 2019 (https://CRAN.R-project.org/package=pairwiseCI)

[63] Schnell, I. B.; Bohmann, K.; Gilbert, M. T. P. Tag jumps illuminated - reducing sequence-to-sample misidentifications in metabarcoding studies, Molecular Ecology Resources, Volume 15 (2015) no. 6, pp. 1289-1303 | DOI

[64] Wetlands on the edge: The future of southern California’s wetlands: Regional strategy 2018 (p. 142). California State Coastal Conservancy. , Southern California Wetlands Recovery Project, 2018 (https://scwrp.org/wp-content/uploads/2018/10/WRP-Regional-Strategy-2018-100518_lowRes.pdf)

[65] Sekar, R.; Kaczmarsky, L. T.; Richardson, L. L. Effect of freezing on PCR amplification of 16S rRNA genes from microbes associated with black band disease of corals, Applied and Environmental Microbiology, Volume 75 (2009) no. 8, pp. 2581-2584 | DOI

[66] Shaffer, H. B.; Fellers, G. M.; Randal Voss, S.; Oliver, J. C.; Pauly, G. B. Species boundaries, phylogeography and conservation genetics of the red-legged frog (Rana aurora/draytonii) complex, Molecular Ecology, Volume 13 (2004) no. 9, pp. 2667-2677 | DOI

[67] Shirazi, S.; Meyer, R. S.; Shapiro, B. Revisiting the effect of PCR replication and sequencing depth on biodiversity metrics in environmental DNA metabarcoding, Ecology and Evolution, Volume 11 (2021) no. 22, pp. 15766-15779 | DOI

[68] Smart, A. S.; Weeks, A. R.; Rooyen, A. R.; Moore, A.; McCarthy, M. A.; Tingley, R. Assessing the cost‐efficiency of environmental DNA sampling, Methods in Ecology and Evolution, Volume 7 (2016) no. 11, pp. 1291-1298 | DOI

[69] Stein, E. D.; Cayce, K.; Salomon, M.; Bram, D. L.; De Mello, D.; Grossinger, R.; Dark, S. Wetlands of the southern California coast: Historical extent and change over time (SFEI Report 720; SCCWRP Technical Report 826; p. 58). Southern California Coastal Water Research Project and San Francisco Estuary Institute, 2014 (https://www.sfei.org/sites/default/files/biblio_files/826_Coastal_Wetlands_and_change_over_time_Aug_2014.pdf)

[70] Suomalainen, L.-R.; Reunanen, H.; Ijäs, R.; Valtonen, E. T.; Tiirola, M. Freezing induces biased results in the molecular detection of Flavobacterium columnare, Applied and Environmental Microbiology, Volume 72 (2006) no. 2, pp. 1702-1704 | DOI

[71] Swift, C. C.; Haglund, T. R.; Ruiz, M.; Fisher, R. N. The status and distribution of the freshwater fishes of southern California, Bulletin of the Southern California Academy of Sciences, Volume 92 (1993), pp. 101-167 | DOI

[72] Swift, C. C.; Spies, B.; Ellingson, R. A.; Jacobs, D. K. A new species of the bay goby genus Eucyclogobius, endemic to southern California: Evolution, conservation, and decline, PLOS ONE, Volume 11 (2016) no. 7 | DOI

[73] Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding: Next-generation DNA metabarcoding, Molecular Ecology, Volume 21 (2012) no. 8, pp. 2045-2050 | DOI

[74] Taberlet, P.; Prud’Homme, S. M.; Campione, E.; Roy, J.; Miquel, C.; Shehzad, W.; Gielly, L.; Rioux, D.; Choler, P.; Clément, J.-C.; Melodelima, C.; Pompanon, F.; Coissac, E. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies: Extraction of extracellular DNA from soil, Molecular Ecology, Volume 21 (2012) no. 8, pp. 1816-1820 | DOI

[75] Takahara, T.; Minamoto, T.; Doi, H. Effects of sample processing on the detection rate of environmental DNA from the Common Carp (Cyprinus carpio), Biological Conservation, Volume 183 (2015), pp. 64-69 | DOI

[76] Thomsen, P. F.; Willerslev, E. Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity, Biological Conservation, Volume 183 (2015), pp. 4-18 | DOI

[77] Torti, A.; Lever, M. A.; Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments, Marine Genomics, Volume 24 (2015), pp. 185-196 | DOI

[78] Tsuji, S.; Takahara, T.; Doi, H.; Shibata, N.; Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection, Environmental DNA, Volume 1 (2019) no. 2, pp. 99-108 | DOI

[79] Turba, R.; Thai, G.; Jacobs, D. Different approaches to processing environmental DNA samples in turbid waters have distinct effects for fish, bacterial and archaea communities (Scripts, Code and Dataset), Dryad, 2023 | DOI

[80] Turba, R.; Thai, G.; Jacobs, D. Different approaches to processing environmental DNA samples in turbid waters have distinct effects for fish, bacterial and archaea communities (Supplementary material), Zenodo, 2023 | DOI

[81] Turner, C. R.; Barnes, M. A.; Xu, C. C. Y.; Jones, S. E.; Jerde, C. L.; Lodge, D. M. Particle size distribution and optimal capture of aqueous macrobial eDNA, Methods in Ecology and Evolution, Volume 5 (2014) no. 7, pp. 676-684 | DOI

[82] Turner, C. R.; Uy, K. L.; Everhart, R. C. Fish environmental DNA is more concentrated in aquatic sediments than surface water, Biological Conservation, Volume 183 (2015), pp. 93-102 | DOI

[83] van der Loos, L. M.; Nijland, R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved, Molecular Ecology, Volume 30 (2021) no. 13, pp. 3270-3288 | DOI

[84] Williams, K. E.; Huyvaert, K. P.; Piaggio, A. J. Clearing muddied waters: Capture of environmental DNA from turbid waters, PLOS ONE, Volume 12 (2017) no. 7 | DOI

[85] Zinger, L.; Lionnet, C.; Benoiston, A.-S.; Donald, J.; Mercier, C.; Boyer, F. metabaR: an R package for the evaluation and improvement of DNA metabarcoding data quality, bioRxiv (2020) | DOI

Different approaches to processing environmental DNA samples in turbid waters have distinct effects for fish, bacterial and archaea communities (2024)

References

Top Articles
Latest Posts
Article information

Author: Foster Heidenreich CPA

Last Updated:

Views: 5916

Rating: 4.6 / 5 (56 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Foster Heidenreich CPA

Birthday: 1995-01-14

Address: 55021 Usha Garden, North Larisa, DE 19209

Phone: +6812240846623

Job: Corporate Healthcare Strategist

Hobby: Singing, Listening to music, Rafting, LARPing, Gardening, Quilting, Rappelling

Introduction: My name is Foster Heidenreich CPA, I am a delightful, quaint, glorious, quaint, faithful, enchanting, fine person who loves writing and wants to share my knowledge and understanding with you.